Суббота, 10 сентября 2016 года
Строительство
Сортировать статьи по:  дате | популярности | посещаемости | алфавиту

Микроструктурные технологии (B81)

Опубликовано: 02.09.2018

B81            Микроструктурные технологии (126)

Использование: для герметизации МЭМС устройств. Сущность изобретения заключается в том, что способ включает формирование в приборном слое изолирующих канавок глубиной до захороненного окисла, формирование на поверхности приборного слоя металла в зоне эвтектического сплава и на контактных площадках МЭМС-устройств, формирование на герметизирующей крышке соединяющих шин и обкладок емкостей на основе легированного поликремния, формирование на герметизирующей крышке межслойного диэлектрика и второго уровня поликремния в зоне эвтектического сплава, приведение металла приборного слоя в контакт с поликремнием на герметизирующей крышке с приложением необходимого давления и температуры для образования эвтектического сплава.

Изобретение относится к микрокристаллическому алмазному покрытию, предназначенному для трибологических областей применения в сфере микромеханики, а также в оптике.

Группа изобретений относится к области биохимии. Предложена оснастка для получения заготовки микрофлюидного чипа, способ получения заготовки микрофлюидного чипа, заготовка микрофлюидного чипа, способ изготовления микрофлюидного чипа и микрофлюидный чип.

Группа изобретений относится к области механики, микросистемной техники и наномеханики, в частности к технике манипуляторов (пинцетов) для захвата и перемещения нано- и микрообъектов.

Изобретение относится к оптической технике. Оптический модулятор, каждый пиксель которого содержит перекрывающие площадь пикселя неподвижный плоский поляризатор и параллельный ему подвижный плоский поляризатор.

Изобретение относится к двигательным ракетным системам для малоразмерных космических аппаратов и предназначено для использования в качестве маневрового двигателя при выполнении линейных и угловых перемещений.

Использование: для создания микромеханического компонента. Сущность изобретения заключается в том, что микромеханический компонент включает в себя подложку и активную структуру, которая выполнена с возможностью отклонения относительно подложки по меньшей мере в одном направлении и которая имеет по меньшей мере один первый участок и второй участок, причем первый участок и второй участок электропроводны, физически жестко соединены друг с другом вдоль первой оси (X) и электрически изолированы друг от друга посредством изолирующего участка, первый электрод, который проходит наружу из первого участка вдоль второй оси (Y) в первом направлении, и второй электрод, который проходит наружу из первого участка вдоль второй оси (Y) во втором направлении, причем вторая ось (Y) расположена перпендикулярно первой оси (X), и причем второе направление противоположно первому направлению, и третий электрод, который проходит наружу из второго участка вдоль второй оси (Y) в первом направлении, и четвертый электрод (232), который проходит наружу из второго участка вдоль второй оси (Y) во втором направлении.

Использование: для создания микромеханического компонента. Сущность изобретения заключается в том, что способ изготовления микроэлектромеханического компонента включает этап изготовления композита первого слоя, содержащего структурированный слой, который является электропроводящим по меньшей мере на первом участке, и канавку, заполненную изолирующим материалом, которая проходит в наружном направлении от первой поверхности структурированного слоя и размещена на первом участке структурированного слоя, причем первая поверхность структурированного слоя обращена к первой поверхности композита первого слоя, этап изготовления композита второго слоя, имеющего первое углубление на первой поверхности композита второго слоя, этап соединения композита первого слоя с композитом второго слоя с примыканием первой поверхности композита первого слоя к первой поверхности композита второго слоя по меньшей мере на некоторых участках и размещением заполненной канавки в пределах бокового положения первого углубления, после соединения композита (10) первого слоя с композитом (20) второго слоя толщину композита (10) первого слоя уменьшают от второй поверхности (112) композита (10) первого слоя до глубины заполненной канавки (15), причем вторую поверхность (112) композита (10) первого слоя располагают напротив первой поверхности (110) композита (10) первого слоя, и этап изготовления активной структуры (17) компонента (1) в структурированном слое (11), причем активная структура (17) размещена в пределах бокового положения первого углубления (210) и содержит два вторых участка (115) структурированного слоя, которые размещены на первом участке структурированного слоя, жестко физически соединены друг с другом и электрически изолированы друг от друга посредством заполненных канавок; до соединения композита первого слоя с композитом второго слоя заполненная канавка в композите первого слоя проходит на глубину, которая меньше толщины композита первого слоя; композит первого слоя дополнительно содержит вспомогательный слой, примыкающий ко второй поверхности структурированного слоя, причем вторая поверхность структурированного слоя расположена напротив первой поверхности структурированного слоя, и заполненная канавка проходит на вторую поверхность структурированного слоя.

Изобретение относится к технологии создания селективных мембран, функционирующих за счет избирательной диффузии водорода сквозь тонкую пленку палладия или его сплава, и может быть использовано в устройствах глубокой очистки водорода от сопутствующих примесей, сепарации водорода из водородсодержащих примесей, например в микрореакторах.

Изобретение относится к нанотехнологии получения композитных наноструктур - упорядоченных мультислоев микросфер диоксида кремния и наночастиц серебра.

Изобретение относится к области микротехники и касается способа изготовления устройства микротехники в объеме пластины фоточувствительного стекла (ФС).

Использование: для изготовления конструктивного элемента. Сущность изобретения заключается в том, что создают композит первого слоя, содержащий первую подложку, выполненную из проводящего материала, и по меньшей мере одну канавку, сформированную в нем и заполненную изолирующим материалом, причем первая область первой подложки электрически изолирована в боковом направлении от других областей первой подложки посредством канавки, создают композит второго слоя, содержащий композит первого слоя и структурный слой, который содержит активную структуру конструктивного элемента и выполнен электропроводящим по меньшей мере в первой области, причем активная структура примыкает к первой поверхности первой подложки в первой области первой подложки и соединена с ней электропроводящим образом, на второй поверхности первой подложки, расположенной противоположно первой поверхности первой подложки, затем создают первую контактную площадку в первой области первой подложки, причем первая область первой подложки электрически изолирована в боковом направлении от других областей первой подложки посредством канавки на второй поверхности первой подложки.

Использование: для производства микроносителей. Сущность изобретения заключается в том, что способ включает следующие шаги: получение пластины, имеющей структуру сэндвича, состоящего из нижнего слоя, верхнего слоя и изолирующего слоя, расположенного между упомянутым нижним и верхним слоями, стравливание верхнего слоя с целью разграничения боковых стенок тел микроносителей, нанесение первого активного слоя как минимум на верхнюю поверхность тел, нанесение сплошного полимерного слоя поверх первого активного слоя, стравливание нижнего слоя и изолирующего слоя, удаление полимерного слоя для освобождения микроносителей.

Использование: для изготовления микро- и наномеханических балок, обладающих заданным изгибом. Сущность изобретения заключается в том, что способ включает нанесение жертвенного слоя на подложку, последовательное нанесение двух или более слоев материала балки, отличающихся величиной внутренних механических напряжений, формирование балки на поверхности жертвенного слоя с помощью фотолитографии и травления материала балки, удаление жертвенного слоя из-под балки, нанесение слоев материала балки выполняют методом высокочастотного магнетронного распыления мишени, а разные внутренние механические напряжения в слоях обеспечивают за счет разных значений напряжения постоянного смещения на подложке, при которых наносят слои, при этом заданный изгиб балки достигают путем подбора толщин слоев материала балки, значений напряжения смещения и количества слоев.

Использование: для формирования резистных масок. Сущность изобретения заключается в том, что наносят слой резиста, в качестве которого выбирают низкомолекулярный полистирол, на подложку методом термического вакуумного напыления, при этом температура подложки во время напыления не более 30°C; формируют на подложке скрытое изображение путем локального экспонирования высокоэнергетичным пучком электронов с дозой засветки 2000-20000 мкКл/см2; проявляют резист при подогреве подложки в вакууме до температуры 600-800 К и при давлении не более 10-1 мбар и плазменное травление для переноса рисунка резистной маски в подложку для формирования микро- и наноструктуры на подложке.

Использование: для изготовления микромеханических устройств, содержащих упругие гибкие деформируемые исполнительные элементы.

Использование: для создания систем, обеспечивающих микроперемещения. Сущность изобретения заключается в том, что кремниево-полиимидное гибкое сочленение для микросистем содержит соединяемые полиимидной вставкой кремниевые элементы, при этом в кремниевых элементах выполнены отверстия, заполненные материалом полиимидной вставки.

Группа изобретений относится к датчикам для измерения скорости воздушного летательного аппарата по отношению к окружающей его воздушной массе.

Изобретение относится к теплотехнике и может быть использовано в теплообменниках, применяемых в различных областях техники.

Изобретение относится к микрофлюидной системе и может быть использовано для количественного определения отклика живых клеток на определенные молекулы.

Использование: для использования в качестве многовариантного переключателя электрических цепей. Сущность изобретения заключается в том, что нанопереключатель содержит деформируемую жестко закрепленную на одном конце нанотрубку и два основных электрода для образования двух электропроводящих цепей с помощью электрического поля этих электродов, два электрода, выполняющих функцию управления с помощью своего электрического поля деформацией нанотрубки для создания четырех дополнительных электрических цепей, а также наличием четырех дополнительных основных электродов, деформирующих посредством своего электрического поля нанотрубку и в результате этого вступающих в контакт с ней для образования поочередно четырех дополнительных электропроводящих цепей.

Предметом настоящего изобретения является микромеханическая деталь (11, 21, 31, 41, 51, 61), изготовленная из цельного куска материала.

Изобретение относится к микро- и наноструктурированным покрытиям, применяемым, в частности, в области оптически прозрачных проводящих покрытий.

Настоящее изобретение относится к способу получения простых полиэфироспиртов путем реакции друг с другом следующих исходных компонентов: a) одного или нескольких алкиленоксидов и при необходимости диоксида углерода, а также b) одной или нескольких стартовых субстанций с водородной функциональностью, в присутствии катализатора, с образованием жидкой реакционной смеси, в реакционной единице (1), отличающийся тем, что в реакционной единице (1) имеются внутренние устройства (2), которые формируют множество микроструктурированных каналов для потока, вызывающих многократное разделение жидкой реакционной смеси на отдельные потоки, текущие по своим траекториям, и повторное воссоединение их в измененном порядке, причем многократное разделение и повторное воссоединение повторяют от 10 до 10000 раз, и причем микроструктурированные каналы для потока имеют характерный размер, который определяется как максимально возможное расстояние от одной произвольной частицы жидкой реакционной смеси до ближайшей к частице стенки канала для потока, в пределах от 20 до 10000 мкм, и таким образом профиль потока жидкой реакционной смеси через микроструктурированные каналы для потока от параболического приближается к идеальному пробкообразному потоку, причем внутренние устройства (2) представляют собой реакционные пластины (2), причем две или более реакционные пластины (2), размещенные параллельно друг над другом в направлении главного потока через реакционную единицу (1), в каждом случае образуют реакторный модуль (3), причем реакционная единица (1) содержит один или несколько реакторных модулей (3), и причем каждая реакционная пластина (2) содержит множество прорезей с постоянной или переменной шириной (4), которые расположены параллельно друг другу, под углом α, отличным от нуля, к направлению главного потока, а непосредственно соседствующая реакционная пластина (2) содержит множество соответствующих в геометрическом смысле прорезей (4), которые расположены под тем же углом α, но с противоположным знаком, и причем прорези (4) всех расположенных друг над другом реакционных пластин (2) формируют канал для потока.

Изобретение относится к области микроэлектронной техники и может быть использовано при разработке технологического оборудования для изготовления гибридных микросхем большого формата, упрощения и удешевления такого оборудования.

Использование: для изготовления трехмерных микромеханических структур на кремниевой пластине. Сущность изобретения заключается в том, что способ защиты углов трехмерных микромеханических структур на кремниевой пластине с кристаллографической ориентацией (100) при глубинном анизотропном травлении в водном растворе гидрооксида калия KОН включает формирование масочного рисунка с элементами защиты углов, примыкающими к исходной части топологической маски вблизи точки пересечения сторон защищаемого чипа или трехмерной микроструктуры на пластине и продолжающимися за пределы исходной части маски, при котором для защиты выпуклых углов чипа или трехмерной микроструктуры формируют масочный рисунок с элементами Т-образной формы, содержащей продольную и поперечную части, причем травление проводят до тех пор, пока кремниевые элементы, сформированные в области маски защиты углов, не стравятся в процессе анизотропного химического травления до границы исходной топологической области жесткого центра микромеханической структуры, продольные части двух соседних Т-образных элементов защиты перпендикулярны друг другу, причем размеры изготовляемых трехмерных микромеханических структур определяют из определенных условий.

Изобретение относится к способу изготовления микромеханической детали (11, 31, 41) из цельного куска материала. Способ включает следующие этапы: a) формирование подложки, которая включает в себя негативную полость для упомянутой изготовляемой микромеханической детали; b) формирование временного слоя на одной из частей подложки; c) осаждение частиц на подложке, которые должны стать точками проращивания; d) удаление временного слоя таким образом, чтобы на одной из частей подложки были выборочно удалены все частицы; e) осаждение слоя материала при помощи химического парофазного осаждения таким образом, чтобы материал осаждался только в тех местах, где остались частицы; f) удаление подложки для освобождения микромеханической детали, образованной в упомянутой негативной полости.

Изобретение относится к области электронной техники и может быть использовано при изготовлении приборов микроэлектромеханических систем, в частности интегральных микромеханических реле и устройств на их основе.

Изобретение относится к устройствам полимерной электроники, в частности к матричным устройствам для преобразования давления в электрический сигнал.

Группа изобретений относится к способу получения формованных изделий с покрытием с полностью или частично структурированными поверхностями, установке для осуществления этого способа и формованному изделию, изготовленному этим способом.

Использование: для изготовления микроэлектромеханических структур. Сущность изобретения заключается в том, что способ защиты углов трехмерных микромеханических структур на кремниевой пластине с кристаллографической ориентацией (100) при глубинном анизотропном травлении в водном растворе гидрооксида калия КОН включает формирование масочного рисунка с элементами защиты углов, элементы защиты углов, имеющие диагональную форму на топологической маске, располагают под углом 45° к контурам жесткого центра, причем размеры изготовляемых трехмерных микромеханических структур определяются из определенных условий.

Изобретение относится к изготовлению герметичных конструкций, образующих микроэлектромеханические системы.

Изобретение относится к электрофизике. Технический результат состоит в снижении момента инерции во время колебания.

Гибридный ракетно-прямоточный воздушно-реактивный аэрокосмический двигатель включает ракетный двигатель на топливе в виде нанопорошка алюминия размером не более 25 нм в жидкой водной фазе и совмещенный с ним прямоточный воздушно-реактивный двигатель на молекулярном водороде, образующимся при сжигании нанопорошка алюминия.

Изобретение относится к области обработки информации, в частности к конструкции оптических модуляторов. Техническими результатами являются уменьшение мерцания изображения и экономия энергии.

Изобретения относятся к приборостроению, в частности к микромеханическому узлу, в особенности к регулируемому оптическому фильтру.

Изобретение относится к многослойной экранно-вакуумной изоляции (ЭВИ) с микроструктурными элементами для космических аппаратов (КА).

Изобретение относится к измерительной технике. С его помощью представляется возможным расширить температурный диапазон работы датчика на основе тонкопленочной нано- и микроэлектромеханической системы, повысить воспроизводимость таких параметров тензорезисторов, как электрическое сопротивление и температурный коэффициент сопротивления, снизить температурную чувствительность датчиков.

Использование: для композиционного микромеханического компонента. Сущность изобретения заключается в том, что изготовление композиционного микромеханического компонента включает стадию обеспечения подложкой, стадию вытравливания на верхнем слое по меньшей мере одного рисунка до промежуточного слоя, стадию нанесения на верхнюю часть указанной подложки электроизоляционного покрытия, стадию направленного травления указанного покрытия и указанного промежуточного слоя, стадию выполнения электроосаждения при подсоединении электрода к электропроводному нижнему слою подложки, отделение композиционного компонента от подложки.

Сухой клей, включающий микроструктурную и наноструктурную поверхность и эластичную поверхность, имеющую твердость по Шору А около 60 или менее.

Изобретение относится к области инерциальных микроэлектромеханических систем, используемых в качестве датчиков перегрузок, таких как, например, акселерометры или гироскопы.

Изобретение относится к микроструктурным микроэлектромеханическим системам. Электростатический микроэлектромеханический ключ содержит кремниевый кристалл со сформированным подвижным электродом в виде консоли с выполненными в ней симметричными щелевидными отверстиями, образующими гибкие поддерживающие балки разной длины, перпендикулярные друг другу, и подложку, на которой размещен, по меньшей мере, один неподвижный электрод и токовые шины, соединенную с кремниевым кристаллом с образованием зазора между подвижным и неподвижным электродами, причем подвижный электрод снабжен шунтом, закорачивающим токовые шины при контакте и расположенным со смещением относительно центра в сторону от свободного края подвижного электрода.

Изобретение относится к области микроэлектроники - устройствам микросистемной техники, выполненным по технологиям микрообработки кремния, и может выполнять роль исполнительного элемента датчиковой аппаратуры в части измерения параметров перемещения, ускорения, температуры, механической силы, массы, электрической мощности, потока, освещенности и влажности. Техническим результатом заявленного изобретения является: - совмещение в одной конструкции датчиков различных физических величин, в частности: перемещения, ускорения, температуры, механической силы, массы, электрической мощности, потока, освещенности и влажности; - возможность функционирования в условиях открытого космоса и устойчивость к жестким температурным условиям эксплуатации; - возможность изготовления датчика групповыми методами по стандартным технологиям микрообработки кремния и механообработки элементов конструкции; - широкие возможности по унификации и созданию типоразмерного ряда датчиков с различными пределами измерения необходимых физических величин; - возможность подстройки датчика за счет активного режима работы; - применение в качестве датчика обратной связи для систем на основе подвижных термомеханических микроактюаторов. Технический результат достигается тем, что микросистемный емкостной датчик измерения физических величин включает: - основание из диэлектрического материала, - один или более исполнительных элементов в виде подвижных термомеханических микроактюаторов, расположенных на основании; при этом над слоем полиимида подвижных термомеханических микроактюаторов на боковых противоположных гранях кремниевых канавок, заполненных полиимидом, сформированы металлические обкладки конденсатора, параллельно соединенные между собой проводниками, идущими вдоль подвижного хвостовика термомеханического микроактюатора до его основания; на основании и/или внутри основания сформированы металлизированные дорожки для электрического контакта к площадкам подвижного термомеханического микроактюатора, выполненным с возможностью измерения емкости между обкладками сформированного на подвижном термомеханическом микроактюаторе конденсатора.

Изобретение относится к электронной технике. Модулированно-легированный полевой транзистор содержит фланец, пьедестал, гетероэпитаксиальную структуру, буферный слой, исток, затвор, сток и омические контакты.

Изобретение относится к области измерительной техники и может найти применение при измерениях толщины тонкопленочных структур.

Изобретение относится к технике контроля герметичности микроэлектромеханических и микроэлектронных устройств, для функционирования которых требуется герметичный корпус с внутренней полостью.

Изобретение относится к области радиоэлектроники и касается способа формирования канала для передачи оптического сигнала между электронными модулями на одной печатной плате.

Использование: для соединения герметичных корпусов устройств на базе микроэлектромеханических систем (МЭМС).

Многофункциональная сенсорная микроэлектромеханическая система (МЭМС) предназначена для использования в газоанализаторах, в медицине в качестве биосенсоров, в микроэлектронике и других высокотехнологичных областях для контроля технологических процессов.

Изобретение относится к системам защиты микромеханических систем и предназначено для обеспечения защиты первичных преобразователей ускорения (ППУ) от действия внешних дестабилизирующих факторов (ВДФ).

 

rss