Суббота, 10 сентября 2016 года
Строительство
Сортировать статьи по:  дате | популярности | посещаемости | алфавиту

Главная Новости

Тематический словарь

Опубликовано: 05.10.2018

видео Тематический словарь

Самые важные глаголы! Видео-словарь. Часть 2

14. Понятие минеральные вяжущие вещества, виды

Вяжущие вещества - строительные материалы для изготовления бетонов и растворов. Различают неорганические (минеральные) вяжущие вещества(цемент, гипс, известь и др.) и органические (битумы, дегти, пеки).



Минеральные вяжущие вещества (обычно порошкообразные) при смешивании с водой (иногда с водными растворами солей) образуют пластичную массу, приобретающую затем камневидное состояние. Их делят на гидравлические, способные твердеть и сохранять прочность на воздухе и в воде (напр., портландцемент), и воздушные, твердеющие и сохраняющие прочность только на воздухе (гипс, известь)


Английский по фильмам || Тематический словарь по сериалу ИГРА ПРЕСТОЛОВ

15. Гипсовые вяжущие. Сырье и условия получения

Сырьем для производства гипсовых вяжущих веществ служат сульфатные горные породы, преимущественно минерал двуводный гипс (СаSO4*Н2О).

При тепловой обработке природный гипс постепенно теряет часть химически связанной воды, а при температуре от 110 до 180°С становится полуводным гипсом. После тонкого измельчения этого продукта обжига получают гипсовое вяжущее вещество.

Низкообжиговые гипсовые вяжущие вещества условно разделяют на строительный, формовочный и высокопрочный гипсы.

Гипс строительный является продуктом обжига тонкоизмельченного двуводного гипса. На отдельных заводах после обжига гипс подвергают вторичному помолу. Он относится к мелкокристаллической разновидности гипсового вяжущего вещества, что увеличивает водопотребность при затворении строительного гипса водой до стандартной консистенции теста. В отвердевшем состоянии обладает невысокой прочностью - 2 ... 16 МПа. Но прочность на сжатие уменьшается с увлажнением образцов.

Гипс формовочный состоит также из полугидрата сульфата кальция, отличаясь от гипса строительного большей тонкостью помола.

Гипс высокопрочный является продуктом тонкого помола а-полугидрата, получаемого в результате тепловой обработки в условиях, в которых вода из гипса выделяется в капельно-жидком состоянии. Такие условия возможны в автоклаве в среде насыщенного пара при давлении 0,15 ... 0,3 МПа. Вместо автоклавов возможно использование в качестве тепловой среды водных растворов некоторых солей, например хлористого кальция.

Гипс высокообжиговый (эстрихгипс). При температурах обжига (800 ... 950°С) помимо обезвоживания гипсового сырья происходит и частичная термическая диссоциация с образованием СаО, активизирующим химическое взаимодействие вяжущего с водой и ускоряющим процессы твердения. Начало схватывания наступает не ранее 2 ч, предел прочности при сжатии составляет 10 .,. 20 МПа, а водостойкость несколько выше, чем у гипсовых вяжущих и ангидритового цемента. Его применяют для изготовления декоративных и отделочных материалов, например искусственного «мрамора», штукатурных растворов, устройства бесшовных полов и подготовки под линолеум.

Отличительной особенностью гипсовых вяжущих веществ является их низкий срок схватывания, что вызывает определенное неудобство при производстве строительных работ. По срокам схватывания они разделяются на быстро-, нормально- и медленнотвердеющие. Для продления сроков схватывания в гипсовое тесто нередко вводят добавки-замедлители, например кератиновый клей, сульфитно-дрожжевую бражку и др. Они адсорбируются частицами гипса, что затрудняет их растворение и начало схватывания.

Твердение и свойства гипсовых вяжущих

Как и любые вяжущие вещества, гипсовые вяжущие при смешивании с водой образуют пластичное тесто, превращающееся со временем в камневидное тело.

В процессе твердения гипсовых вяжущих можно выделить три этапа:

1) подготовительный - образование раствора, насыщенного по отношению к продуктам гидратации;

2) период коллоидации (схватывание) - переход новообразований в раствор в гелеобразном виде, минуя растворение;

3) период кристаллизации (твердение) - перекристаллизация коллоидных частиц в большие кристаллы и образование сростка.

При твердении строительного гипса происходит химическая реакция присоединения воды и образования двуводного сульфата кальция CaSO4*0,5H2O + 1,5Н20 = CaS04*2H20.

Схватывание (загустевание) гипсового теста начинается с образования рыхлой пространственной коагуляцнонной структуры, в которой кристаллики двугидрада связаны слабыми ван-дер-ваальсовыми силами молекулярного сцепления. После схватывания происходит твердение, обусловленное ростом кристаллов новой фазы, их срастанием и образованием кристаллизационной структуры. Свежеизготовленные гипсовые изделия сушат (при 60--70°С), что повышает прочность контактов срастания кристаллов и самих изделий вследствие удаления пленочной воды.

Основными характеристиками гипсовых вяжущих служат сроки схватывания, тонкость помола, прочность при сжатии и растяжении, водопотребность и др.

Тонкость помола характеризуется массой гипсового вяжущего (% пробы, взятой для просеивания, но не менее 50 г), оставшегося при просеивании на сите с ячейками размером в свету 0,2 мм. Установлены три степени помола, обозначаемые соответственно I, II, III: I (грубый помол) -остаток на сите не более 30 %; II (средний помол)- остаток на сите не более 15%; III (тонкий помол)-- остаток на сите не более 2 %.

Водопотребность гипсового вяжущего определяется количеством воды, % массы вяжущего, необходимым для получения гипсового теста стандартной консистенции (диаметр расплыва 180±5 мм).

По срокам схватывания ГОСТ 125-79 предусматривает выпуск следующих вяжущих;

быстротвердеющего (индекс А) - с началом схватывания не ранее 2 мин, конец - не позднее 15 мин;

нормально твердеющего (индекс Б) -с началом схватывания не ранее 6 мин, конец - не позднее 30 мин;

медленнотвердеющего (индекс В)-с началом схватывания не ранее 20 мин (конец схватывания не нормируется) .

В зависимости от степени помола различают вяжущие грубого, среднего и тонкого помола с максимальным остатком на сите с размером ячеек 0,2 мм не более соответственно 23% 14% и 2%, обозначаемые индексами I, II и III.

Марку гипсовых вяжущих (от Г-2 до Г-25) характеризуют по прочности при сжатии образцов- балочек 40x40x160 мм в возрасте 2 ч после затворения водой. Минимальный предел прочности при сжатии соответствующих марок меняется в пределах 2-25 МПа, а при изгибе- 1,2-8,0 МПа.

Чтобы получить гипсовое удобоукладываемое тесто, необходимо взять 60-80% воды от массы вяжущего, а на химическую реакцию гидратации требуется лишь 18,6% воды. Избыток ее остается в порах, затем испаряется, поэтому получившийся в результате твердения полуводного гипса гипсовый камень обладает высокой пористостью, достигающей 40-60% и более. Чем больше воды затворения, тем выше пористость камня, а прочность его соответственно меньше. Прочность гипсовых образцов, высушенных при температурах до 330 К, в 2-2,5 раза выше прочности влажных образцов после 1,5 ч твердения.

6. Воздушная известь. Сырье и условия получения

Сырьем для производства воздушной извести служат плотные известняки, ракушечники, мел, доломитизированные известняки при условии, что содержание глинистых примесей в них не превышает 6%. Сырье обжигают при температуре 1000 ... 1200°С до полного удаления углекислого газа. Обжиг известняка производится в печах различных конструкций: шахтных, вращающихся, с «кипящим» слоем, в циклонно-вихревых печах во взвешенном состоянии, а также на движущихся агломерационных решетках. Распространен обжиг в шахтных печах, которые надежны в эксплуатации, позволяют использовать местные виды топлива и требуют меньшего его расхода, После обжига получают комовую известь или известь-кипелку (так ее называют из-за бурной химической реакции с водой). Это вещество обладает сильно развитой внутренней микропористостью и большим запасом свободной внутренней энергии, что проявляется при гашении комовой извести, т. е. присоединении воды с выделением большого количества теплоты.

Известняки при обжиге разлагаются на известь СаО и углекислый газ, который полностью удаляется. Реакция разложения известняка обратимая.

Признаком высокого качества извести является высокое содержание в ней СаО + MgO. Недожог и пережог извести в печи снижают ее качество. Особенно опасен пережог - остеклованная известь. Частицы пережога медленно гасятся с увеличением в объеме и могут вызвать трещины в штукатурке и изделиях.

Содержание чистых окислов CaO + MgO в общем количестве извести называют ее активностью. По активности и содержанию непогасившихся зерен определяется сорт извести.

Гашение извести производится в условиях стройплощадки в творильных ящиках с сеткой для сцеживания разжиженного известкового теста (известкового молока) в гасильную яму, где оно выдерживается длительное время. В заводских условиях известь гасят в специальных барабанных гасителях. Гашение извести производят в пушонку или в известковое тесто. При расходе воды 1 л на 1 кг извести комовой известь превращается в тонкий рыхлый порошок со значительным увеличением в объеме; при расходе воды 2 ... 3 л на 1 кг извести получается известковое тесто, что тоже сопровождается увеличением в объеме. Для получения из пушонки известкового теста ее разбавляют водой. Обычно содержание воды в известковом тесте составляет примерно 50% (по массе). Гашеная известь медленно схватывается и твердеет, обладает низкой прочностью, поэтому кроме гашеной извести в строительстве применяют известь негашеную. По содержанию оксида магния в извести она подразделяется на кальциевую (MgO<5%), магнезиальную (MgO = 5 ... 20%) и доломитовую (MgO = 20 ... 40%); по времени гашения различают известь быстрогасящуюся (время гашения < 8 мин), среднегасящуюся (время гашения 8 ... 25 мин) и медленногасящуюся (время гашения не менее 25 мин).

Воздушную известь применяют для приготовления кладочных и отделочных растворов, изготовления штучных бетонных изделий, например известковошлаковых, силикатного кирпича и других известково-песчаных изделий автоклавного твердения.

17. Твердение и свойства воздушной извести

Известь применяют в виде строительных растворов, т.е. в смеси с песком и другими заполнителями. На воздухе известковый раствор постепенно отвердевает под влиянием двух одновременно протекающих процессов: а) высыхания раствора, сближения кристаллов Са(ОН)2 и их срастания; б) карбонизации извести под действием углекислого газа, который в небольшом количестве содержится в воздухе: Са(ОН)2 + С02 -» СаС03 + Н20.

Образующийся карбонат кальция срастается с кристаллами Са(ОН)2 и упрочняет известковый раствор. При карбонизации выделяется вода, поэтому штукатурку и стены, в которых применены известковые растворы, подвергают сушке. Известковые растворы твердеют медленно, сушка ускоряет процесс их твердения. Для ускорения твердения к извести добавляют цемент и гипс. Цемент и активные минеральные добавки повышают также водостойкость известковых растворов.

Известковое тесто, защищенное от высыхания, неограниченно долго сохраняет пластичность, т. е. у извести отсутствует процесс схватывания. Затвердевшее известковое тесто при увлажнении вновь переходит в пластичное состояние (известь - неводостойкий материал).

Однако при длительном твердении (десятилетия) известь приобретает довольно высокую прочность и относительную водостойкость (например, в кладке старых зданий). Это объясняется тем, что на воздухе известь реагирует с углекислым газом, образуя нерастворимый в воде и довольно прочный карбонат кальция, т. е. как бы обратно переходит в известняк:

Са(ОН)2 + С02 -» СаС03 + Н20

18. Применение гипсовых вяжущих и воздушной извести

строительный материал гипсовый вяжущий

Область применения воздушной извести - приготовление известково-песчаных и смешанных строительных растворов, которые используют в каменной кладке и при оштукатуривании поверхностей, а также для побелки и в производстве силикатных изделий.

В зависимости от содержания оксида магния воздушная известь разделяется на кальциевую (MgO<5%), магнезиальную (MgO = 5-20%) и высокомагнезиальную, или доломитовую (MgO = 20-40 %).

Наиболее важные показатели качества извести: активность - процентное содержание оксидов, способных гаситься; количество непогасившихся зерен (недожог и пережог); время гашения.

В зависимости от времени гашения извести всех сортов различают: быстрогасящуюся известь с временем гашения до 8 мин, среднегасящуюся - время гашения не превышает 25 мин и медленно гасящуюся с временем гашения более 25 мин.

Строительные растворы на воздушной извести имеют невысокую прочность. Так, известковые растворы через 28 суток воздушного твердения имеют прочность при сжатии: на гашеной извести 0,4-1 МПа, на молотой негашеной извести до 5 МПа. Поэтому сорт воздушной извести устанавливают не по прочности, а по характеристикам ее состава (табл. 5.1). Чем меньше глинистых и других примесей в исходном известняке, тем выше активность извести, быстрее происходит ее гашение и больше выход известкового теста.

Марки гипса от Г-2 до Г-7 (группы А, Б, В и I, II, III) применяют для изготовления разнообразных гипсовых строительных изделий. Марки Г-2 до Г-7 (группы А, Б и II, III) применяют для изготовления тонкостенных строительных изделий и декоративных деталей. Марки от Г-2 до Г-25 (Б, В и II, III) применяют в штукатурных работах, для заделки швов и в специальных целях.

19. Магнезиальные вяжущие и жидкое стекло

Сырьем для магнезиальных вяжущих служат магнезит и доломит.

Обжиг магнезита производится при температуре 750 ... 800°С (во вращающихся печах до 1000°С) до полного разложения MgСОз на MgO и СО2 с удалением углекислого газа. После помола MgO представляет собой воздушное вяжущее вещество, называемое каустическим магнезитом, оно имеет предел прочности при сжатии 40 ... 60 МПа, достигая иногда до 100 МПа.

Обжиг доломита производят при более низких температурах <в интервале 650 ... 750оС, так как при повышении температуры обжига начинает разлагаться и СаСОз с образованием извести.

Особенностью применения магнезиальных вяжущих веществ является затворение их водными растворами магнезиальных солей, причем начало схватывания наступает не позднее 20 мин, а конец - не позднее 6 ч.

Растворимое (жидкое) стекло.

Для производства растворимого стекла сырьем служат в основном чистый кварцевый песок и кальцинированная сода или сернокислый натрий, значительно реже вторым компонентом является поташ.

Тщательно перемешанную сырьевую смесь расплавляют в стекловаренных печах при температуре 1300 ... 1400°С, а затем стекломассу выгружают в вагонетки. При быстром охлаждении она твердеет и раскалывается на куски, именуемые силикат- глыбой. Лучше всего растворять силикат-глыбу в автоклавах при давлении 0,6 ... 0,7 МПа и температуре 150°С, превращая ее в сиропообразную жидкость. Жидкое (растворимое) стекло применяют для производства кислотоупорных цементов, жароупорных бетонов, силикатных красок и обмазок, для пропитки (силикатизации) грунтовых оснований.

20. Портландцемент. Сырье и условия получения. Способы производства цемента

Портландцементом называют гидравлическое вяжущее вещество, в составе которого преобладают силикаты кальция ( 70-80 % ). Портландцемент - продукт тонкого измельчения клинкера с добавкой (3-5 %) гипса. Клинкер представляет собой зернистый материал (в виде порошка или гранул), полученный обжигом до спекания (при 1450оС) сырьевой смеси, состоящей в основном из карбоната кальция (различных видов известняков) и алюмосиликатов (глин, мергеля, доменного шлака и др.).

Основные свойства портландцемента обусловливаются составом клинкера. Качество клинкера определяет все свойства портландцемента; добавки же, вводимые в цемент, лишь регулирует его свойства. Качество клинкера зависит от его химического и минерального состава, тщательности подготовки сырьевой массы, условий проведения ее обжига и режима охлаждения.

Сырье для получения портландцемента. В качестве сырья иногда используют природные горные породы - мергели. В них содержатся необходимые для производства портландцементов количества каронатных (75 ... 78 %) и глинистых пород (25 ... 22 %). В большинстве случаев необходимое сочетание пород получается искусственным путем. В этом случае в качестве карбонатных пород используются известняки, мел, известковые ракушечники; в качестве глинистых - глины, глинистые сланцы, лёссы, доменные шлаки; кроме того, в состав сырьевой смеси вводятся различные корректирующие добавки, например гипс. Гипс необходим для регулирования сроков схватывания. С увеличением количества гипса увеличиваются (замедляются) сроки схватывания. Однако максимальное количество вводимого гипса регламентируется химическим составом портландцемента.

Производство портландцемента. Производство портландцемента состоит из следующих процессов: добычи сырья и доставки его на завод; подготовки сырья и смеси; обжига смеси - получения клинкера; измельчения клинкера с добавками - получения цемента.

По характеру подготовки сырья и приготовления смеси различают мокрый и сухой способы изготовления цемента.

При мокром способе сырье дробят и размалывают без дополнительной подсушки. Весьма часто помол осуществляют с добавлением воды, глину размешивают в специальных емкостях - болтушках. Смесь готовят тщательным перемешиванием жидких молотых смесей в шламбассейнах. В этом случае подготовленная смесь - цементный шлам - содержит до 40 % и более воды.

При сухом способе тонкое измельчение исходного сырья - помол - осуществляют в сухом состоянии. Тщательное смешивание производят в специальных смесителях. В строительстве наиболее распространен мокрый способ, при котором удается достичь хорошей гомогенности сырьевой смеси, что в конечном итоге обусловливает получение цемента с более высокими и стабильными качествами. В связи с созданием оборудования, обеспечивающего хорошую гомогенизацию в смеси тонкомолотых порошков, сухой способ как более экономичный (не требующий теплоты на испарение воды) и, следовательно, перспективный находит все большее применение.

21. Обжиг клинкера. Химический и минералогический состав клинкера

Химический состав клинкера определяется содержанием оксидов (% по массе), причем главных из них: СаО 63- 66, SiQ2 21-24, А1203 4-8, Fe203 2-4; их суммарное количество составляет 95-97%. В небольших количествах в виде различных соединений могут входить MgO, S03, Na2О и К2О, а также ТiO2, Сг203, Р2О5. В процессе обжига, доводимого до спекания, главные оксиды образуют силикаты, алюминаты, алюмоферрит кальция в виде минералов кристаллической структуры, а некоторые из них входят в стекловидную фазу.

Минеральный состав клинкера. Основные минералы клинекера: алит, белит, трехкальциевый алюминат и алюмоферрит кальция.

Алит 3CaO-Si02 (или C3S*) - самый важный минерал клинкера, определяющий быстроту твердения, прочность и другие свойства портландцемента; содержится в клинкере в количестве 45-60 °С. Алит представляет собой твердый раствор трехкальциевого силиката и небольшого количества (2-4 %) MgO, А1203, Р205, Сг203 и других примесей, которые могут существенно влиять на структуру и свойства.

Белит 2CaO-Si02 (или C2S) - второй по важности и содержанию (20-30%) силикатный минерал клинкера. Он медленно твердеет, но достигает высокой прочности при длительном твердении портландцемента. В интервале между нормальной температурой и 1500 °С существу ет пять кристаллических форм двухкальциевого силиката. Белит в клинкере представляет собой твердый раствор В-двухкальциевого силиката (В-C2S) и небольшого количества (1-3%) А1203, Fe203, MgO, Сг203.

Обжиг смеси производится во вращающихся печах, представляющих собой металлические цилиндры, обложенные внутри огнеупорной футеровкой. Печь укладывают на специальные катки с небольшим уклоном к поверхности земли, за счет чего по мере вращения сырьевая смесь продвигается по печи от приподнятого конца к опущенному. Длина печи достигает 180 м, а иногда доходит до 250 м, диаметр - до 6 м. По мере продвижения смесь подсушивается, скатывается в шарики и под действием высокой температуры (1450 ... 1500 °С) спекается в гранулы размером 5 ... 20 мм и более. Затем гранулы охлаждаются сначала в печи, в зоне охлаждения, впоследствии - в специальных устройствах - холодильниках.

Существует и достаточно прогрессивный способ обжига клинкера. В печи силикатный расплав заменен расплавом на основе хлористого кальция. Существенно снижается температура обжига (1100 ... 1150 °С), в 3 .. .4 раза облегчается помол, но в цементе появляется минерал - алинит, содержащий алюмохлоридсиликат кальция. Этот цемент быстрее твердеет в начальные сроки.

Остывший клинкер подвергают размолу чаще всего в шаровых мельницах, представляющих собой металлические цилиндры диаметром до 3,5 и длиной до 15 ... 20 м, которые выложены изнутри бронированными плитами. Мельницы имеют 2 ... 3 камеры, отделенные друг от друга металлическими перегородками с отверстиями для прохождения размалываемого материала.

Размол клинкера и постепенное продвижение размалываемого материала обеспечиваются при вращении за счет наклона мельницы. По выходе из шаровой мельницы портландцемент подают на склад в силосы, где он остывает и выдерживается некоторое время, достаточное для стабилизации.

22. Твердение и основные свойства портландцемента

Свойства портландцемента. К основным техническим свойствам портландцемента относятся: истинная плотность, средняя плотность, тонкость помола, сроки схватывания, нормальная густота (водопотребность цемента), равномерность изменения объема цементного теста, прочность затвердевшего цементного раствора.

Истинная плотность цемента находится в пределах 3000 ... 3200 кг/м3, плотность в рыхлом состоянии - 900 ... 1300 кг/м3, в уплотненном (слежавшемся) - 1200 ... 1300 кг/м3.

Тонкость помола характеризуется остатком на сите № 08 или удельной поверхностью, проверяемой на специальном приборе ПСХ. Согласно ГОСТ через сито № 08 должно проходить не менее 85 % массы пробы, удельная поверхность при этом (поверхность зерен цемента общей массой 1 г) должна быть 2500 ... 3000 см2/г.

Нормальная густота цементного теста (количество воды в % от массы цемента) определяется погружением пестика, укрепляемого на штанге прибора Вика, и колеблется в пределах 21 ... 28 %. Она зависит от минералогического состава цемента и тонкости помола.

Сроки схватывания проверяют прибором Вика на цементном тесте нормальной густоты. Согласно требованиям ГОСТ начало схватывания должно быть не ранее 45 мин; конец - не позднее 10 ч (нормально - 2 ... 3 ч),

Если в цементе в результате нарушений технологического процесса при изготовлении окажется много свободных осадков кальция и магния, то процесс их гашения при затворении цемента водой будет протекать замедленно. Это явление может привести к разрушению уже затвердевшего цементного камня. Для предотвращения подобных явлений при оценке качества цемента и проводят испытание на равномерность изменения объема.

Одним из основных свойств цемента является прочность, которая определяется в положенные сроки испытанием образцов (балочек) размером 40 х 40 х 160 мм первоначально на изгиб, а затем половинок - на сжатие. Балочки готовят из раствора состава 1:3 (1 ч. по массе цемента, 3 ч.- нормального вольского песка) при водоцементном отношении (отношении количества воды к количеству цемента), равном 0,4. Водоцементное отношение в свою очередь проверяется, а при необходимости корректируется по расплаву конуса на встряхивающем столике. Расплыв усеченного конуса из растворной смеси, изготовленного в форме высотой 60 мм и основаниями верхним с внутренним диаметром 70 мм и нижним - 100 мм, после 30 встряхиваний должен быть в пределах 106 ... 115 мм. При отсутствии встряхивающего столика испытания проводят на стандартной лабораторной виброплощадке. В этом случае после 20 секунд вибрирования расплыв должен быть (170 ± 5) мм.

Твердение цемента. Твердение портландцемента - сложный физико-химический процесс. При затворении цемента водой основные минералы, растворяясь, гидратируются по уравнениям:

Образующиеся новообразования отличаются от первоначальных меньшей растворимостью и, выпадая в осадок, выкристаллизовываются, что приводит к потере пластичности (схватыванию) и последующему твердению. Добавка гипса в самом начале процесса при растворении взаимодействует с трехкальциевым алюминатом, образуя гидросульфоалюминаты, которые, обволакивая цементные зерна, замедляют процесс растворения и гидратации. Однако в последующем эти оболочки разрушаются (чем меньше гипса, тем замедление короче по времени) и процесс твердения ускоряется. Но сами выкристаллизовывающиеся новообразования начинают препятствовать гидратации, поэтому значительная часть зерен цемента может гидратироваться при наличии водной среды весьма продолжительный срок, измеряемый даже годами.

Цемент твердеет тем быстрее, чем больше в нем алита (алитовые цементы) и трехкальциевого алюмината. С течением времени процесс твердения резко замедляется. Цементы, содержащие много белита (белитовые цементы), в раннем возрасте твердеют медленно; нарастание прочности продолжается длительно и равномерно. Процессы твердения и особенно схватывания сопровождаются выделением теплоты, которая тем интенсивнее, чем быстрее протекает процесс схватывания. Поэтому в массивных конструкциях, как правило, применяют белитовые цементы. Использование в таких конструкциях алитовых цементов может привести к интенсивности тепловыделению, разогреву до высокой температуры (70 ... 80 °С), появлению трещин и даже потере воды, что в итоге приведет к утрате цементным камнем своих качеств. В то же время применение алитовых цементов позволяет быстрее получить минимальную прочность, а интенсивное тепловыделение обеспечивает в некоторых случаях необходимую для твердения температуру в зимних условиях.

При твердении цемента на воздухе происходит небольшая усадка, а в воде - набухание.

23. ?Виды цементов

Название "портландцемент" происходит от названия английского города Портланд: цвет материала схож по оттенку с цветом скал вокруг этого города.

Портландцемент, или силикатный цемент, пользуется высоким спросом. Исходный вид портландцемента - порошок серо-зеленого оттенка. Его особенность - тонкий помол клинкера с гипсом и возможность примешивания специальных добавок. Портландцементный клинкер характеризуется высоким содержанием силикатов кальция. Применение различных видов портландцемента зависит от целей и задач, поставленных при строительстве.

Быстротвердеющий портландцемент применяется там, где необходимо схватывание материала в сжатые сроки. В его составе - высокий процент трехкальциевого алюминия и трехкальциевого силиката. Прочность этого вида цемента возрастает уже на первом этапе отвердевания - в первые сутки - трое после его применения.

Гидрофобный портландцемент отличается сложным составом. В него включают мылонафт (0,1-0,2%), асидол, синтетические жирные кислоты, окисленный петролатум и другие добавки. Такой состав смеси приводит к образованию особой оболочки, придающей частицам цемента повышенную прочность.

При изготовлении белого портландцемента применяют маложелезистый клинкер. Это позволяет получить не обычный серый цемент, а материал белого цвета, на основе которого путем добавления красящих пигментов получают разноцветные цементы. Они применяются при декоративном оформлении объектов и при изготовлении цветных бетонных дорожек.

В состав пластифицированного портландцемента входит 0,25% сульфитно-спиртовой барды. Это поверхностно-активное вещество дает возможность сократить расход материала, пластифицируя цемент. Бетонная смесь в этом случае получается пластичной. Кроме экономии строительного материала, это позволяет быстрее провести укладку бетона и повысить качество работы. Бетон, сделанный на основе пластифицированного цемента, имеет повышенные показатели морозоустойчивости.

Шлаковый цемент общее название цементов получаемых совместным помолом гранулированных доменных шлаков с добавками- активизаторами (известь строительный гипс ангидрит и др.) или смешением этих раздельно измельченных компонентов. Различают известково-шлаковый с содержанием извести 10-30% и гипса до 5% от массы цемента и сульфатно-шлаковый с содержанием гипса или ангидрита 15-20% портландцемента до 5% или извести до 2%. Шлаковый цемент применяют для получения строительных растворов и бетонов используемых преимущественно в подземных и подводных сооружениях. Известково-шлаковый цемент наиболее эффективен в производстве автоклавных материалов и изделий.

Быстротвердеющий цемент цемент характеризующийся интенсивным нарастанием прочности в начальный период твердения. Применяется в основном для изготовления сборных железобетонных конструкций и изделий. Выпускаются: быстротвердеющий портландцемент с пределом прочности при сжатии через 3 сут 25 Мн/м2 (250 кгс/см2) особо быстротвердеющий портландцемент а также быстротвердеющий шлакопортландцемент.

Пуццолановый цемент собирательное название группы цементов в состав которых входит не менее 20% активных минеральных добавок. В строительстве основной вид пуццоланового цемента - пуццолановый портландцемент получаемый совместным помолом портландцементного клинкера (60-80%) активной минеральной добавки (20-40%) и небольшого количества гипса. От обычного портландцемента он отличается повышенной коррозионной стойкостью (особенно в мягких и сульфатных водах) меньшей скоростью твердения и пониженной морозостойкостью. Пуццолановый цемент применяют в основном для получения бетонов используемых в подводных и подземных сооружениях.

Водонепроницаемый расширяющийся цемент (ВРЦ) представляет собой быстросхватывающее и быстротвердеющее гидравлическое вяжущее вещество получаемое путем совместного помола и тщательного смешивания измельченных глиноземистого цемента гипса и высокоосновного гидроалюмината кальция. Цемент характеризуется быстрым схватыванием: начало процесса- ранее 4 мин. конец не позднее 10 мин. с момента затворения.

Глинозёмистый цемент быстротвердеющее гидравлическое вяжущее вещество; продукт тонкого измельчения клинкера получаемого обжигом (до плавления или спекания) сырьевой смеси состоящей из бокситов и известняков.

Сульфатостойкий цемент сульфатостойкий портландцемент разновидность портландцемента. По сравнению с обычным портландцементом сульфатостойкий цемент обладает повышенной стойкостью к действию минерализованных вод содержащих сульфаты меньшим тепловыделением замедленной интенсивностью твердения и высокой морозостойкостью.

Романцемент получают обжигом не до спекания известняковых или магнезиальных мергелей содержащих более 20% глины. Продукт обжига размалывают и получают гидравлические вяжущие. Образуются алюминаты, ферриты и силикаты придающие гидравлические свойства.

24. Коррозия цементного камня. Ее виды и методы защиты

Коррозия цементного камня в водных условиях по ряду ведущих признаков может быть разделена на три вида:

Первый вид коррозии - разрушение цементного камня в результате растворения и вымывания некоторых его составных частей. Наиболее растворимой является гидроксид кальция, образующийся при гидролизе трехкальциевого силиката. Растворимость Са(ОН)2 невелика (1,3 г СаО на 1 л при 15°С), но из цементного камня в бетоне под воздействием проточных мягких вод количество растворенного и вымытого Са(ОН)2 непрерывно растет, цементный камень становится пористым и теряет прочность.

Несколько предохраняет от данного вида коррозии защитная корка из углекислого кальция, образующаяся на поверхности бетона в результате реакции между гидроксидом кальция и углекислотой воздуха

Са (ОН)2 + СО2 = СаСОз + Н2О

Второй вид коррозии - разрушение цементного камня водой, содержащей соли, способные вступать в обменные реакции с составляющими цементного камня. При этом образуются продукты, которые либо легкорастворимы, либо выделяются в воде аморфной массы, не обладающей связующими свойствами. В результате таких преобразований увеличивается пористость цементного камня и, следовательно, снижается его прочность.

К третьему виду коррозии относятся процессы, возникающие под действием сульфатов. В порах цементного камня происходит отложение малорастворимых веществ, содержащихся в воде, или продуктов взаимодействия их с составляющими цементного камня. Их накопление и кристаллизация в порах вызывают значительные растягивающие напряжения в стенках пор и приводит к разрушению цементного камня. Характерным видом сульфатной коррозии цементного камня является взаимодействие растворенного в воде гипса с трехкальциевым гидроалюминатом:

ЗСаО * А12О3 * 6Н2О + 3CaSO4 + 25H2O = ЗСаО * А12О3 * 3CaSO4 * 31Н2О

При этом образуется труднорастворимый гидросульфоалюминат кальция, который, кристаллизуясь, поглощает большое количество воды и значительно увеличивается в объеме (примерно в 2,5 раза), что оказывает сильное разрушающее действие на цементный камень.

Исключить или ослабить влияние коррозионных процессов при действии различных вод можно конструктивными мерами, путем улучшения технологии приготовления бетона и применения цементов определенного минералогического состава и необходимого содержания активных минеральных добавок.

rss