Суббота, 10 сентября 2016 года
Строительство
Сортировать статьи по:  дате | популярности | посещаемости | алфавиту

Главная Новости

Воздушный режим почв

Опубликовано: 12.10.2018

Состав почвенного воздуха

Почвенный воздух, или газовая фаза, – важнейшая составная часть почвы, находящаяся в тесном взаимодействии с твёрдой, жидкой и живой фазами.

 

Почвенным воздухом называется смесь газов и летучих соединений, заполняющих поры почвы, свободные от воды.

Наличие достаточного количества воздуха, его благоприятный состав не менее важны в жизни почвы и формирования урожая, чем обеспеченность почв водой и питательными веществами.

Главные источники газовой фазы почвы – атмосферный воздух и газы, образующиеся в самой почве. С атмосферным воздухом в почву поступает кислород, необходимый для дыхания растений, аэробных микроорганизмов, почвенной фауны. В процессе дыхания кислород потребляется с выделением углекислого газа.

Большинство растений не может существовать без непрерывного притока кислорода к корням и вывода углекислого газа из почвы. Растения, корневая система которых находится под водой, например рис, приспособились к усвоению воздуха листьями и переноса его по паренхиме к корням растения и ризосферным микроорганизмам. Если изолировать почву от атмосферного воздуха, то кислород в ней расходуется полностью через несколько суток. Следовательно, почвенный воздух обеспечивает живые организмы кислородом только при условии постоянного обмена с атмосферным воздухом. Процесс обмена почвенного воздуха с атмосферным называют газообменом или аэрацией.

Почвенный воздух находится в трёх состояниях: свободном, адсорбированном и растворённом.

Свободный почвенный воздух находится в некапиллярных и капиллярных порах почвы, обладает подвижностью, способен свободно перемещаться в почве и обмениваться атмосферным. Наибольшее значение в аэрации почв имеет воздух некапиллярных пор, практически всегда свободных от воды.

В суглинистых и глинистых почвах часть свободного почвенного воздуха при увлажнении изолируется пробками воды и теряет сплошность. Такой воздух называется защемлённым. Его значение в аэрации почв невелика. Величина защемлённого воздуха составляет в среднем 6 – 8 % объёма почвы, а в глинистых почвах может быть более 12 %; определяется по разности значений между общей пористостью и полной влагоёмкостью, выраженной в объёмных процентах.

Адсорбированный почвенный воздух – газы, сорбированные поверхностью твёрдой фазы почвы. Адсорбция газов сильнее проявляется в почвах тяжёлого гранулометрического состава, богатых органическим веществом. Газы адсорбируются в зависимости от строения их молекул, дипольного момента в такой последовательности:

NH3 > CO2 > O2 > N2.

Наибольшее количество адсорбированного воздуха характерно для сухих почв, так как твёрдые частицы почвы активнее поглощают пары воды, чем газы. При влажности почв выше максимальной гигроскопичности вода вытесняет поглощённые газы, что отражается на изменении состава свободного почвенного воздуха.

Растворённый почвенный воздух – газы, растворенные в почвенной воде. Растворимость возрастает с повышением их концентрации в свободном почвенном воздухе, а также с понижением температуры почвы. Хорошо растворяются в воде аммиак, сероводород, углекислый газ. Растворимость кислорода сравнительно небольшая (табл. 1).

1. Растворимость газов в воде (г/л) при различной температуре и атмосферном давлении 101 кПа

˚C

O2

CO2

H2S

NH3

10

0,038

1,134

3,329

910

15

0,034

1,019

2,945

802

20

0,031

0,878

2,582

711

 

В зависимости от температуры почвы и активности в ней биохимических процессов содержание кислорода в почвенных растворах изменяется от 0 до 14 мг/л. Высокая насыщенность кислородом (6 – 14 мг/л) почвенного раствора отмечается ранней весной, когда почва переувлажнена, а расход последнего ещё не велик вследствие низкой биологической активности почвы.

Растворённые газы проявляют высокую активность. С насыщением почвенного раствора СО2 повышается растворимость карбонатов, гипса и других минеральных соединений. Растворённый кислород поддерживает окислительные свойства почвенного раствора.

Состав свободного почвенного воздуха. Основную роль в почве играет свободный воздух. Несмотря на его постоянную связь с атмосферным, он характеризуется рядом особенностей.

Состав атмосферного воздуха довольно постоянный, и содержание его основных компонентов изменяется незначительно. В атмосферном воздухе содержится в объёмных процентах: 78,08 азота (N2), 20,95 кислорода (О2), 0,93 аргона (Аr), 0,03 углекислого газа (СО2), на долю неона, криптона, ксенона, озона, радона, водорода приходится всего 0,01 %. (И.Б. Ревут, 1972).

В хорошо дренированных почвах состав почвенного воздуха близок к составу атмосферного, поскольку расходуемый в почве кислород быстро перемещается из атмосферы в почву. Другая картина наблюдается в плохо аэрируемых почвах. Состав почвенного воздуха изменчив значительно.

В зависимости от таких факторов, как время года, температура, влажность почвы, глубина, развитие и рост корневых систем, микробиологическая активность, рН и прежде всего скорость газообмена через почвенную поверхность, состав почвенного воздуха в большей или меньшей степени отличается от состава атмосферного. Наиболее сильные различия отмечаются в концентрации углекислоты (СО2), которая является основным продуктом аэробного дыхания корней высших растений и многочисленных макро- и микроорганизмов в почве. Если концентрация СО2 в атмосфере – 0,03 %, то в почве она достигает уровней, которые в десятки или даже в сотни раз выше.

Поскольку СО2 продуцируется в почве путём окисления содержащего кислорода органического вещества, поскольку повышение концентрации СО2 обычно связано с понижением концентрации СО2 обычно связано с понижением концентрации элементного кислорода О2 (хотя и необязательно в строго пропорциональной степени, так как могут существовать дополнительные источники кислорода в растворённой воде форме или легко восстанавливаемых соединениях).

Так как концентрация кислорода в атмосферном воздухе обычно около 20,96 %, то очевидно, что даже стократное увеличение концентрации СО2 от 0,03 до 3 % может понизить концентрацию кислорода только до 18 %. Однако, прежде чем растения начнут страдать от недостатка кислорода, некоторые из них могут страдать от избыточной концентрации СО2 и как в газовой, так и в жидкой фазах.

В крайних случаях в условиях весьма затруднённой аэрации концентрация О2 может падать до нуля и продолжительные анаэробные условия могут приводить к созданию химических условий, характеризующихся развитием восстановительных реакций (например, денитрификации), к выделению сероводорода (H2S), метана (СН4) и этилена, и восстановлению минеральных окислов.

В пахотных хорошо аэрируемых почвах с благоприятными физическими свойствами содержание СО2 в почвенном воздухе в течении вегетации растений не превышает 1 – 2 %, а содержание СО2 не бывает ниже 18 %. При переувлажнении в пахотных почвах тяжёлого гранулометрического состава содержание СО2 может достигать 4 – 6 % и более, а О2 падать до 17 – 15 % и ниже. В заболоченных почвах наблюдаются ещё более высокие концентрации СО2 и низкие О2.

Азот почвенного воздуха мало отличается от атмосферного. Некоторые изменения в содержании азота происходят в результате связывания его клубеньковыми бактериями, проявление денитрификации. В почвенном воздухе обнаруживается и другой характерный продукт денитрификации – закись азота (N2O).

В почвенном воздухе в небольшом количестве (1-10-9-1·10-12 %) постоянно присутствуют летучие органические соединения различной природы (этилен, метан и др.). С ухудшением аэрации в почвенном воздухе этилен накапливается в концентрациях, превышающий уровень токсичности для корней растений (0,001 %).

На заболоченных и болотных почвах в почвенном воздухе могут находиться в заметных количествах аммиак, водород, метан.

Почвенный воздух неоднороден по составу и подвижности, в зависимости от размера почвенных пор. В более крупных порах воздух более подвижен, менее обогащён СО2 больше содержит О2.

6.2. Экологическая роль почвенного воздуха.

Для растений. Высшие растения весьма чувствительны к составу почвенного воздуха. В корне, как и в других органах растений, ясно выражен процесс дыхания, т.е. поглощение кислорода и выделение углекислоты.

Дыхание корней тесно связано с содержанием кислорода в почве, хотя об оптимальном содержания количественном содержании в почве кислорода и углекислоты однозначно ответить нельзя, так как оно зависит от очень многих факторов.

По данным В.А. Новикова, содержание в почвенном воздухе 7 – 12 % кислорода, что, по мнению автора, имеет место лишь в хорошо обрабатываемых структурных почвах, обеспечивает интенсивное дыхание корней, хороший их рост и активное поглощение ими минеральных веществ. В тяжёлых глинистых плохо аэрируемых почвах, где наблюдается снижение содержания кислорода до 1 – 2 %, рост корней замедляется, поглощение воды и питательных веществ ограничивается, а рост надземной части растений прекращается.

М.Б. Рассел так же приводит данные о том, что кислород имеет важное значение во всех процессах жизнедеятельности корней растений: в дыхании, поглощении воды и питательных веществ. Однако у него мы встречаем указание, что реакция различных видов растений на содержание кислорода в почвенном воздухе различна. Причём крайними в ряду растений являются водные с одной стороны, и обитающие на хорошо аэрируемых почвах – с другой.

Рис, например, способен обмениваться газами между корнями и воздухом на поверхности воздуха через ткани растений, т.е. путём внутреннего переноса кислорода от частей, расположенных над поверхностью почвы (листья и стебли), к частям, распространённым в почве, заметной водой. Однако большинство растений неспособны удовлетворить потребность корней в кислороде за счёт внутреннего переноса.

Реакция почвы (листья и стебли), к частям, распространённым в почве, залитой водой. Однако большинство растений неспособны удовлетворить потребность корней в кислороде за счёт внутреннего переноса.

Реакция растений на содержание того или иного количества кислорода в почве в значительной степени зависит от температуры среды. (И.Б. Ревут,1972). Так, если в почвенном воздухе содержится 3 % кислорода, то угнетение растений отмечается при температурах 18 – 30 ˚С. При содержании 10 % кислорода в почвенном воздухе нормальное развитие растений отмечалось при 18 ˚С, а при 30 ˚С скорость роста при такой концентрации кислорода замедляется. Отсюда следует, что потребная для корней концентрация кислорода в почвенном воздухе тем выше, чем выше температура почвы. Причина этого явления лежит в снижении растворимости кислорода в воде и в повышении процессов дыхания растений. Последнее связано с повышенным расходом кислорода.

Другая важная закономерность заключается в том, что рост корней может продолжаться при сравнительно низком содержании кислорода в почвенном воздухе, но при обязательном условии непрерывного поступления его из атмосферы.

Д. Бойтон получил очень интересные критические величины концентраций кислорода в почвенном воздухе для корней яблони. Если в период активного роста яблони диаметр корней превышает 1 мм, то низшим пределом содержания кислорода можно считать 3 %. При концентрации кислорода менее 1 % корни заметно теряют в весе. Для активного роста кончиков корней оказалось необходимым повысить концентрацию кислорода до 5 – 10 %, а для появления новых корней – до 12 %. Однако для нормального хода поглощения воды и питательных веществ корнями содержание кислорода должно быть не ниже 15 %.

Различная реакция растений на содержание кислорода и углекислоты во многом зависит от особенностей самого растения, от его вида, анатомического строения и т.д. Тем не менее И.Б. Ревут (1972) сообщает, что накопление в почвенном воздухе углекислоты в пределах до 10 %, а в некоторых случаях и более, при сравнительно высоком содержании кислорода (более 10 – 15 %) или при низком его содержании, но в условиях бесперебойного воздухообмена с атмосферным воздухом может лишь в очень слабой степени замедлить рост растений. В большинстве случаев это вообще не скажется на условиях их жизни.

Значение почвенного воздуха для микроорганизмов. Содержание кислорода и углекислоты в почвенном воздухе является важным фактором жизнедеятельности почвенных организмов. В зависимости от отношения микроорганизмов к кислороду они разделяются на аэробные – нуждающиеся в наличии свободного кислорода и анаэробные – не нуждающиеся в свободном кислороде, способные расти и развиваться в отсутствии воздуха. Существует так же группа микроорганизмов переходного типа. Одни из них, будучи анаэробными, могут существовать и при широком доступе кислорода. Они носят название факультативных анаэробов. Вместе с тем среди аэробов имеются такие, которые не могут развиваться в среде с большим процентом кислорода. К ним относятся, например, серобактерии, мирящиеся с содержанием кислорода до 3 %. Их называют микроаэрофильными.

И.П. Черечин пришёл к заключению, что переход от аэробных условий к анаэробным при оптимальной температуре и влажности наблюдается при содержании кислорода около 2,5 % к объёму почвенного воздуха. При низких положительных температурах или небольшом содержании влаги в почве анаэробные процессы не развивается даже при снижении концентрации кислорода до 0,5 %. Итого исследований и сделанные выводы представляют большой интерес для земледелия и почвоведения и почвоведения и поэтому они должны подвернуться дальнейшему уточнению.

Влияние почвенного воздуха на процессы, протекающие в почве. Почвенный воздух влияет на почвообразовательные процессы как изменение через микробиологические активности, так непосредственно. Так, растворённый кислород поддерживает окислительные свойства почвенного раствора.

Анаэробные условия в почве вызывают ряд восстановительных реакций как химических, так и биохимических. Среди них денитрификация – процесс восстановления нитратов до нитритов и далее до окислов азота и элементарного азота . Некоторые из многочисленных продуктов анаэробных процессов токсичны.

По данным Р. Бретфильда, Л. Батжера и И. Оскемпа, в зависимости от условий аэрации существенно изменяется состояние некоторых соединений в почве (табл. 2).

2. Форма химических соединений в зависимости от аэрации почвы

Химический элемент

Нормальная форма элемента в хорошо аэрированных почвах

Восстановленная форма в пересыщенных водой почвах

Углерод

СО2

СН2

Азот

NO3

NH2 и NH3

Сера

SO4

H2S

Железо

F+++

F++

Марганец

Mn+++

Mn++

 

Аэрация оказывает существенное влияние на почвенные процессы через изменения микробиологической активности почвы. В аэробных условиях, значительное число почвенных микроорганизмов принимает участие в разложении органического вещества, конечными продуктами которого является углекислота, вода, нитраты, сульфаты, а также соединения кальция, магния, железа и т.п.

В анаэробных условиях возникают совершенно иные продукты разложения органического вещества: метан, сероводород, аммиак, альдегиды.

Концентрация углекислоты играет важную роль в процессах в процессах выветривания первичных минералов в почвах. Повышенное содержание углекислоты воздействует на рН среды, почвенный раствор при этом подкисляется, резко меняется растворимость углекислого кальция. Растворимость СаСО3 при отсутствии углекислоты составляла 0,013 г/л воды, при содержании 0,03 объёмного процента углекислоты растворялось 0,0627 г/л, а при 10 % углекислоты – 0,4889 г/л (И.Б. Ревут, 1972).

В связи с тем, что углекислота заметно воздействует на реакцию среды, содержание её сказывается на формах состояния фосфорной кислоты. В кислых почвах преобладает форма , в то же время в щелочных почвах она переходит в форму, значительно менее доступную для растений. Поэтому на щелочных почвах возрастание содержания углекислоты оказывается в некотором смысле полезным, так как подкисление раствора приводит к повышению растворимости фосфатов и их усвоения растениями.

Необходимо так же учитывать, что чем больше в почве углекислоты, тем больше её выделяется из почвы в приземный слой воздуха. А повышение содержания углекислоты в зоне надземной части растений часто приводит к заметному повышению уровня фотосинтетической деятельности зелёных растений, а нередко и к заметному повышению их продуктивности.

rss